Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136647

RESUMO

Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use of molecular detectors-highly sensitive devices that detect signals from single biomacromolecules. A typical detector in this class is the atomic force microscope (AFM). The high sensitivity of an AFM-based bioanalysis system is determined by the size of the sensing element of an atomic force microscope-the cantilever-the radius of the curvature of which is comparable to that of a biomolecule. Biospecific molecular probe-target interactions are used to ensure detection system specificity. Antibodies, aptamers, synthetic antibodies, and peptides can be used as molecular probes. This study has demonstrated the possibility of using aptamers as molecular probes for AFM-based detection of the ovarian cancer biomarker CA125. Antigen detection in a nanomolar solution was carried out using AFM chips with immobilized aptamers, commercially available or synthesized based on sequences from open sources. Both aptamer types can be used for antigen detection, but the availability of sequence information enables additional modeling of the aptamer structure with allowance for modifications necessary for immobilization of the aptamer on an AFM chip surface. Information on the structure and oligomeric composition of aptamers in the solution was acquired by combining small-angle X-ray scattering and molecular modeling. Modeling enabled pre-selection, before the experimental stage, of aptamers for use as surface-immobilized molecular probes.


Assuntos
Aptâmeros de Nucleotídeos , Microscopia de Força Atômica , Aptâmeros de Nucleotídeos/química , Sondas Moleculares , Modelos Moleculares
2.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958620

RESUMO

Currently, nanopore-based technology for the determination of the functional activity of single enzyme molecules continues its development. The use of natural nanopores for studying single enzyme molecules is known. At that, the approach utilizing artificial solid-state nanopores is also promising but still understudied. Herein, we demonstrate the use of a nanotechnology-based approach for the investigation of the enzymatic activity of a single molecule of horseradish peroxidase with a solid-state nanopore. The artificial 5 nm solid-state nanopore has been formed in a 40 nm thick silicon nitride structure. A single molecule of HRP has been entrapped into the nanopore. The activity of the horseradish peroxidase (HRP) enzyme molecule inserted in the nanopore has been monitored by recording the time dependence of the ion current through the nanopore in the course of the reaction of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation reaction. We have found that in the process of ABTS oxidation in the presence of 2.5 mM hydrogen peroxide, individual HRP enzyme molecules are able to retain activity for approximately 700 s before a decrease in the ion current through the nanopore, which can be explained by structural changes of the enzyme.


Assuntos
Nanoporos , Peroxidase do Rábano Silvestre/química , Ácidos Sulfônicos/química , Benzotiazóis/química , Substâncias Macromoleculares
3.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895017

RESUMO

Morphological features of the nanoform of a phospholipid composition (NFPh), which can be used as an individual pharmaceutic agent or as a platform for designing drug delivery systems, have been studied using atomic force microscopy (AFM). NFPh has been developed, and its characteristics have been investigated using conventional drug analysis methods, including the determination of the mean diameter of nanosized vesicles in the emulsion via dynamic light scattering (DLS). Using DLS, the mean diameter of the vesicles was found to be ~20 nm. AFM imaging of the surface has revealed four types of objects related to NFPh: (1) compact objects; (2) layer fragments; (3) lamellar structures; and (4) combined objects containing the compact and extended parts. For type (4) objects, it has been found that the geometric ratio of the volume of the convex part to the total area of the entire object is constant. It has been proposed that these objects formed owing to fusion of vesicles of the same size (with the same surface-to-volume ratio). It has been shown that this is possible for vesicles with diameters of 20 nm. This diameter is in good coincidence with the value obtained using DLS.


Assuntos
Fosfolipídeos , Fosfolipídeos/química , Microscopia de Força Atômica/métodos , Difusão Dinâmica da Luz
4.
Micromachines (Basel) ; 14(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241647

RESUMO

Glycerol is a usable component of heat-transfer fluids, and is thus suitable for the use in microchannel-based heat exchangers in biosensors and microelectronic devices. The flow of a fluid can lead to the generation of electromagnetic fields, which can affect enzymes. Herein, by means of atomic force microscopy (AFM) and spectrophotometry, a long-term effect of stopped flow of glycerol through a coiled heat exchanger on horseradish peroxidase (HRP) has been revealed. Samples of buffered HRP solution were incubated near either the inlet or the outlet sections of the heat exchanger after stopping the flow. It has been found that both the enzyme aggregation state and the number of mica-adsorbed HRP particles increase after such an incubation for 40 min. Moreover, the enzymatic activity of the enzyme incubated near the inlet section has been found to increase in comparison with that of the control sample, while the activity of the enzyme incubated near the outlet section remained unaffected. Our results can find application in the development of biosensors and bioreactors, in which flow-based heat exchangers are employed.

5.
Micromachines (Basel) ; 13(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36557340

RESUMO

The present study is aimed at the revelation of subtle effects of steam flow through a conical coil heat exchanger on an enzyme, incubated near the heat exchanger, at the nanoscale. For this purpose, atomic force microscopy (AFM) has been employed. In our experiments, horseradish peroxidase (HRP) was used as a model enzyme. HRP is extensively employed as a model in food science in order to determine the influence of electromagnetic fields on enzymes. Adsorption properties of HRP on mica have been studied by AFM at the level of individual enzyme macromolecules, while the enzymatic activity of HRP has been studied by spectrophotometry. The solution of HRP was incubated either near the top or at the side of the conically wound aluminium pipe, through which steam flow passed. Our AFM data indicated an increase in the enzyme aggregation on mica after its incubation at either of the two points near the heat exchanger. At the same time, in the spectrophotometry experiments, a slight change in the shape of the curves, reflecting the HRP-catalyzed kinetics of ABTS oxidation by hydrogen peroxide, has also been observed after the incubation of the enzyme solution near the heat exchanger. These effects on the enzyme adsorption and kinetics can be explained by alterations in the enzyme hydration caused by the influence of the electromagnetic field, induced triboelectrically by the flow of steam through the heat exchanger. Our findings should thus be considered in the development of equipment involving conical heat exchangers, intended for either research or industrial use (including miniaturized bioreactors and biosensors). The increased aggregation of the HRP enzyme, observed after its incubation near the heat exchanger, should also be taken into account in analysis of possible adverse effects from steam-heated industrial equipment on the human body.

6.
Micromachines (Basel) ; 13(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36363968

RESUMO

Our study reported herein aims to determine whether an electromagnetic field, induced triboelectrically by a metallic cone, rotating at a frequency of 167 Hz, has an effect on the properties of the horseradish peroxidase (HRP) enzyme. Atomic force microscopy (AFM) was employed to detect even the most subtle effects on single enzyme molecules. In parallel, a macroscopic method (spectrophotometry) was used to reveal whether the enzymatic activity of HRP in solution was affected. An aqueous solution of the enzyme was incubated at a distance of 2 cm from the rotating cone. The experiments were performed at various incubation times. The control experiments were performed with a non-rotating cone. The incubation of the HRP solution was found to cause the disaggregation of the enzyme. At longer incubation times, this disaggregation was found to be accompanied by the formation of higher-order aggregates; however, no change in the HRP enzymatic activity was observed. The results of our experiments could be of interest in the development of enzyme-based biosensors with rotating elements such as stirrers. Additionally, the results obtained herein are important for the correct interpretation of data obtained with such biosensors.

7.
J Funct Biomater ; 13(4)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36412875

RESUMO

The influence of an external constant strong electric field, formed using a pyramidal structure under a high electric potential, on an enzyme located near its apex, is studied. Horseradish peroxidase (HRP) is used as a model. In our experiments, a 27 kV direct current (DC) voltage was applied to two electrodes with a conducting pyramidal structure attached to one of them. The enzyme particles were visualized by atomic force microscopy (AFM) after the adsorption of the enzyme from its 0.1 µM solution onto mica AFM substrates. It is demonstrated that after the 40 min exposure to the electric field, the enzyme forms extended structures on mica, while in control experiments compact HRP particles are observed. After the exposure to the electric field, the majority of mica-adsorbed HRP particles had a height of 1.2 nm (as opposed to 1.0 nm in the case of control experiments), and the contribution of higher (>2.0 nm) particles was also considerable. This indicates the formation of high-order HRP aggregates under the influence of an applied electric field. At that, the enzymatic activity of HRP against its substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) remains unaffected. These results are important for studying macroscopic effects of strong electromagnetic fields on enzymes, as well as for the development of cellular structure models.

8.
Biomedicines ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36289907

RESUMO

This paper presents an investigation of the temperature dependence of the oligomeric state of the horseradish peroxidase (HRP) enzyme on the temperature of its solution, and on the solution storage time, at the single-molecule level. Atomic force microscopy has been employed to determine how the temperature and the storage time of the HRP solution influence its aggregation upon direct adsorption of the enzyme from the solution onto bare mica substrates. In parallel, spectrophotometric measurements have been performed in order to estimate whether the HRP enzymatic activity changes over time upon the storage of the enzyme solution. The temperature dependence of the HRP oligomeric state has been studied within a broad (15-40 °C) temperature range. It has been demonstrated that the storage of the HRP solution for 14 days does not have any considerable effect on the oligomeric state of the enzyme, neither does it affect its activity. At longer storage times, AFM has allowed us to reveal a tendency of HRP to oligomerization during the storage of its buffered solution, while the enzymatic activity remains virtually unchanged even after a 1-month-long storage. By AFM, it has been revealed that after the incubation of a mica substrate in the HRP solution at various temperatures, the content of the mica-adsorbed oligomers increases insignificantly owing to a high-temperature stability of the enzyme.

9.
J Funct Biomater ; 13(4)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36278635

RESUMO

In this research, the influence of a dodecahedron-shaped structure on the adsorption behavior of a horseradish peroxidase (HRP) enzyme glycoprotein onto mica substrates was studied. In the experiments, samples of an aqueous HRP solution were incubated at various distances (0.03 m, 2 m, 5 m, and control at 20 m) from the dodecahedron surface. After the incubation, the direct adsorption of HRP onto mica substrates immersed in the solutions was performed, and the mica-adsorbed HRP particles were visualized via atomic force microscopy (AFM). The effect of the increased HRP aggregation was only observed after the incubation of the enzyme solution at the 2 m distance from the dodecahedron. In addition, with respect to the control sample, spectrophotometric measurements revealed no change in the HRP enzymatic activity after the incubation at any of the distances studied. The results reported herein can be of use in the modeling of the possible influences of various spatial structures on biological objects in the development of biosensors and other electronic equipment.

10.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641523

RESUMO

MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).


Assuntos
Transtorno do Espectro Autista/sangue , Proteínas Sanguíneas/genética , MicroRNA Circulante/sangue , Microscopia de Força Atômica/instrumentação , Adulto , Proteínas Sanguíneas/metabolismo , Criança , MicroRNA Circulante/metabolismo , Feminino , Humanos , Masculino , Microscopia de Força Atômica/métodos , Pessoa de Meia-Idade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/sangue , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Polymers (Basel) ; 13(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063512

RESUMO

External electromagnetic fields are known to be able to concentrate inside the construction elements of biosensors and bioreactors owing to reflection from their surface. This can lead to changes in the structure of biopolymers (such as proteins), incubated inside these elements, thus influencing their functional properties. Our present study concerned the revelation of the effect of spherical elements, commonly employed in biosensors and bioreactors, on the physicochemical properties of proteins with the example of the horseradish peroxidase (HRP) enzyme. In our experiments, a solution of HRP was incubated within a 30 cm-diameter titanium half-sphere, which was used as a model construction element. Atomic force microscopy (AFM) was employed for the single-molecule visualization of the HRP macromolecules, adsorbed from the test solution onto mica substrates in order to find out whether the incubation of the test HRP solution within the half-sphere influenced the HRP aggregation state. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was employed in order to reveal whether the incubation of HRP solution within the half-sphere led to any changes in its secondary structure. In parallel, spectrophotometry-based estimation of the HRP enzymatic activity was performed in order to find out if the HRP active site was affected by the electromagnetic field under the conditions of our experiments. We revealed an increased aggregation of HRP after the incubation of its solution within the half-sphere in comparison with the control sample incubated far outside the half-sphere. ATR-FTIR allowed us to reveal alterations in HRP's secondary structure. Such changes in the protein structure did not affect its active site, as was confirmed by spectrophotometry. The effect of spherical elements on a protein solution should be taken into account in the development of the optimized design of biosensors and bioreactors, intended for performing processes involving proteins in biomedicine and biotechnology, including highly sensitive biosensors intended for the diagnosis of socially significant diseases in humans (including oncology, cardiovascular diseases, etc.) at early stages.

12.
Sci Rep ; 11(1): 9907, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972657

RESUMO

In our present paper, the influence of a pyramidal structure on physicochemical properties of a protein in buffer solution has been studied. The pyramidal structure employed herein was similar to those produced industrially for anechoic chambers. Pyramidal structures are also used as elements of biosensors. Herein, horseradish peroxidase (HRP) enzyme was used as a model protein. HRP macromolecules were adsorbed from their solution onto an atomically smooth mica substrate, and then visualized by atomic force microscopy (AFM). In parallel, the enzymatic activity of HRP was estimated by conventional spectrophotometry. Additionally, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) has been employed in order to find out whether or not the protein secondary structure changes after the incubation of its solution either near the apex of a pyramid or in the center of its base. Using AFM, we have demonstrated that the incubation of the protein solution either in the vicinity of the pyramid's apex or in the center of its base influences the physicochemical properties of the protein macromolecules. Namely, the incubation of the HRP solution in the vicinity of the top of the pyramidal structure has been shown to lead to an increase in the efficiency of the HRP adsorption onto mica. Moreover, after the incubation of the HRP solution either near the top of the pyramid or in the center of its base, the HRP macromolecules adsorb onto the mica surface predominantly in monomeric form. At that, the enzymatic activity of HRP does not change. The results of our present study are useful to be taken into account in the development of novel biosensor devices (including those for the diagnosis of cancer in humans), in which pyramidal structures are employed as sensor, noise suppression or construction elements.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Enzimas Imobilizadas/ultraestrutura , Peroxidase do Rábano Silvestre/ultraestrutura , Soluções Tampão , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Microscopia de Força Atômica , Neoplasias/diagnóstico , Neoplasias/patologia , Estrutura Secundária de Proteína , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Molecules ; 26(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435278

RESUMO

Atomic force microscopy (AFM)-based fishing is a promising method for the detection of low-abundant proteins. This method is based on the capturing of the target proteins from the analyzed solution onto a solid substrate, with subsequent counting of the captured protein molecules on the substrate surface by AFM. Protein adsorption onto the substrate surface represents one of the key factors determining the capturing efficiency. Accordingly, studying the factors influencing the protein adsorbability onto the substrate surface represents an actual direction in biomedical research. Herein, the influence of water motion in a flow-based system on the protein adsorbability and on its enzymatic activity has been studied with an example of horseradish peroxidase (HRP) enzyme by AFM, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and conventional spectrophotometry. In the experiments, HRP solution was incubated in a setup modeling the flow section of a biosensor communication. The measuring cell with the protein solution was placed near a coiled silicone pipe, through which water was pumped. The adsorbability of the protein onto the surface of the mica substrate has been studied by AFM. It has been demonstrated that incubation of the HRP solution near the coiled silicone pipe with flowing water leads to an increase in its adsorbability onto mica. This is accompanied by a change in the enzyme's secondary structure, as has been revealed by ATR-FTIR. At the same time, its enzymatic activity remains unchanged. The results reported herein can be useful in the development of models describing the influence of liquid flow on the properties of enzymes and other proteins. The latter is particularly important for the development of biosensors for biomedical applications-particularly for serological analysis, which is intended for the early diagnosis of various types of cancer and infectious diseases. Our results should also be taken into account in studies of the effects of protein aggregation on hemodynamics, which plays a key role in human body functioning.


Assuntos
Peroxidase do Rábano Silvestre/isolamento & purificação , Água/química , Técnicas Biossensoriais , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Microscopia de Força Atômica , Estrutura Secundária de Proteína , Silicones/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Sci Rep ; 10(1): 9022, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488177

RESUMO

The phenomenon of knotted electromagnetic field (KEMF) is now actively studied, as such fields are characterized by a nontrivial topology. The research in this field is mainly aimed at technical applications - for instance, the development of efficient communication systems. Until present, however, the influence of KEMF on biological objects (including enzyme systems) was not considered. Herein, we have studied the influence of KEMF on the aggregation and enzymatic activity of a protein with the example of horseradish peroxidase (HRP). The test HRP solution was irradiated in KEMF (the radiation power density was 10-12 W/cm2 at 2.3 GHz frequency) for 40 min. After the irradiation, the aggregation of HRP was examined by atomic force microscopy (AFM) at the single-molecule level. The enzymatic activity was monitored by conventional spectrophotometry. It has been demonstrated that an increased aggregation of HRP, adsorbed on the AFM substrate surface, was observed after irradiation of the protein sample in KEMF with low (10-12 W/cm2) radiation power density; at the same time, the enzymatic activity remained unchanged. The results obtained herein can be used in the development of models describing the interaction of enzymes with electromagnetic field. The obtained data can also be of importance considering possible pathological factors that can take place upon the influence of KEMF on biological objects- for instance, changes in hemodynamics due to increased protein aggregation are possible; the functionality of protein complexes can also be affected by aggregation of their protein subunits. These effects should also be taken into account in the development of novel highly sensitive systems for human serological diagnostics of breast cancer, prostate cancer, brain cancer and other oncological pathologies, and for diagnostics of diseases in animals, and crops.


Assuntos
Campos Eletromagnéticos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Microscopia de Força Atômica , Agregados Proteicos
15.
ACS Chem Biol ; 6(6): 648-57, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21425873

RESUMO

Protozoan parasites of the genus Leishmania synthesize lipophosphoglycans (LPGs), phosphoglycans and proteophosphoglycans that contain phosphosaccharide repeat units of [-6)Gal(ß1-4)Man(α1-OPO(3)H-]. The repeat structures are assembled by sequential addition of Manα1-OPO(3)H and ß-Gal. In this study, an UDP-Gal-dependent activity was detected in L. donovani and L. major membranes using synthetic phospho-oligosaccharide fragments of lipophosphoglycan as acceptor substrates. Incubation of a microsomal preparation from L. donovani or L. major parasites with synthetic substrates and UDP-[6-(3)H]Gal resulted in incorporation of radiolabel into these exogenous acceptors. The [(3)H]galactose-labeled products were characterized by degradation into radioactive, low molecular mass fragments upon hydrolysis with mild acid and treatment with ß-galactosidases. We showed that the activity detected with L. donovani membranes is the elongating ß-d-galactosyltransferase associated with LPG phosphosaccharide backbone biosynthesis (eGalT). The eGalT activity showed a requirement for the presence of at least one phosphodiester group in the substrate and it was enhanced dramatically when two or three phosphodiester groups were present. Using the same substrates we detected two types of galactosyltransferase activity in L. major membranes: the elongating ß-d-galactosyltransferase and a branching ß-d-galactosyltransferase (bGalT). Both L. major enzymes required a minimum of one phosphodiester group present in the substrate, but acceptors with two or three phosphodiester groups were found to be superior.


Assuntos
Leishmania/enzimologia , beta-N-Acetilglucosaminilglicopeptídeo beta-1,4-Galactosiltransferase/metabolismo , Configuração de Carboidratos , Ativação Enzimática , Glicoesfingolipídeos/biossíntese , Dados de Sequência Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...